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Extension of the method of the small angle approximation

Open Dstector.
S Chitanvis & S.A.W. Gerst/
Theoretical Division , Los Alamos National Laboratory , M5-P371
Los Alamos, N1 87345.

A) "Diffusion of aLaser Beam : Open detector”, to be submitted to JOSA

ABSTRACT.
Wwe use the radiative transfer equation to study the multiple scattering
undergone by 2 laser beam propagating through a turbid medium. During
the propagation, we view the beam as first scattering into a narrow
forward cone, and then into a diffuse pattern To describe this process,
we propose a systematic and practical method to combine the small
anglc approximation with the diffusion approximation. The method
works when the scattering cross-section describing scattering from
aerosols can be written as the sum of a gaussian dg to describe

scattering into small angles, and a term d4 . that can be represented by

the first two terms of a Legendre expansion to describe scattering into
larye/diffuse angles. We use 2 Green's function formalism to perform
partial resummations and set up a hierarchy of approximations in the
form of coupled radiative transfer equations to describe the scattering
of radiation from small angles into large angles.

The adjoint operator formalism then provides a simple way to obtain
the net flux received by an open detector at any given point. Our
approximations may be described rigorously as a power series expansion
in 0%/a%, the ratio of the diffusion scattering cross-section to the

forward scattering cross-section Thus our technique works well when
small angle scattering dominates.

I. INTRODUCTION.

The small angle approximation has found a good measure of success In
radiative transfer theory' 23 In describing the scattering of radiation
from relatively large particles (compared to the wavelength) into small
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angles in the forward direction. In fact, a recent comparison of the
theory with experimental results4 shows excellent agreement between
the two for angles of the order of one radian. For larger scattering
angles, however, the theory is not meant to work, for it assumes that the
phase function is described by a sharply peaked Gaussian, fitted to a
realistic phase function4 in the vicinity of the forward direction In
general, the scattering cross-section (or equivalently, the phase

function) may be described by a combination of two termsS:

0(Q,2') = 04(Q.0°) + 040,0°) (1.1)
where o Is connected to the phase function p(Q,Q*) by:

0(Q.Q') = (0%4m) p(Q,Q°) (1.2)
and

0g(Q,2°) = (0%/4m)pg(Q@-Q') (1.3)
with

pg(Q-Q°) = (/1) exp (-x? (Q-02°)? ) (1.4)
while

040,2’) = (0%/4m)p4(@-Q") (1.5)

with g9=200,+a0 and
pg(Q-Q°*) = 1+ 32, P((Q-Q") (1.6)
where Q , Q' are the final and initial scattering angles respectively.

g is the scattering cross-saction 0% is the forward scattering

cross-section (the area under the gaussian part of the scattering
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cross-section), 09, is the diffusion scattering cross-section (the

area under the "smooth” part of the scattering cross-section), 3, is the
first moment in the Legendre expansion of 04(Q,Q"), and P{(e)=cos(e) is

the Legendre polynomial of the first order.

Equation (1.4) describes scattering into small angles, and Zardecki’
has shown that the forward lobe of the Mie scattering cross-section of
aerosols may be well-fitted by o' ~ 10 degrees for wavelengths around
0.5um. As mentioned earlier, neglecting the second term in Eq. (1.1) in
solving the radiative transfer equation is adequate for describing
small-angle (forward) scattering. But for scattering into large angles it

is not appropriate to eliminate o4 from Eq. (1.1).

If g inEq. (1.1) were to be neglected, then the phase function Is seen

to be fairly //a¢, indicating that the radiation wili be scattered in a
fairly diffuse manner. The diffusion aproximation would be appropriate
in that case to solve the radiative transfer equation® provided the
source was fairly isotropic. In the diffusion approximation, only the
first two Legendre moments of the specific intensity I(r,Q) are retained
viz, the energy density [I(r,Q)d2Q and the net flux [I(r.Q)Qa2Q.

From a physical point of view, we may imagine that the radiation is
first scattered by the aerosols into a /orward cong, and this radiation
acts as a cecondary sourcs, which is subsaquently scattered into a
diffuse patiern. Our intultive ideas are similar to those of Tam and

Zardecki? and those of weinman® But in our formulation. we have an
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entire hierarchy of approximations which encompasses the range of the
ratio °°d/°°s- and the error involved in each step of the hierarchy may
be estimated.

2. FORMALISM.

We shall use a Green's function formalism to combine the smail angle
approximation and the diffusion approximation. This method not only
yields a useful physical insight into the scattering process, but provides
us in the end with a set of radiative transfer equations to solve. These
equations may then be solved using standard techniques. Thus a practical
scheme for the combination of the small angle and diffusion
approximations is obtained.

Let I(r,Q) be the specific intensity of the radiation being propagated

through 2 scattering medium whose total cross-section (absorption +
scattering) is oy. If there were no scattering processes, then the loss in
I(r,Q) at r, in the direction Q is given by®:
Qv I(r.Q) = - 0, r.Q) + Qr.Q) (2.)
where Q(r,Q) Is taken to be a gaussian, mono-directional source of

radiation, located at 2=z,
Q(r.Q) = g 8y(p-pg)8(2-2g) 8(j1- pg) 5(9-9) (2.12)

Sx(p-pg) = (¥2/m) exp(-¥(p-pg)?) (2.1b)
whereg ¢ is the azimuthal angle, and ¥ Is the initial width of the beam.
If the radiation were to reappear due to some scattering process then



the net change in I(r,Q) is®:
Qv I(r,Q) = - gy (r.Q)+ [d?%Q' 0(Q,0°) (rQ") ¢+ Q(r.Q) (22)
where o(Q.Q°) is given by Eq. (1.1).
The reason we have chosen a volumetric source rather than a boundary
source is that we would like to have the capability of locating our laser

source of arbitrary strength at arbitrary positions in the atmosphere.

Equation (2.2) may be witten in operator form as:

(Lp-0o)l=Q (23)
where

Lo=QV +0y, (2.4)
0 =0dg+ Oy (255)

and the matrix elements of 0, 0g, 04 are:

0(Q,0') = 0(Q.Q°) (2.6)
04(0,9') = 0,(0,9') (27)
Od(Q.Q') = Ud(Q.Q') (2.8)

where 0(Q.9°) . 0g(Q.9°) , 04(Q.Q°) are given by Eqns. (1.)-(1.6). |
and Q in Eq. (2.3) are column vectors, whose components are glven by
I(r.Q) and Q(r.Q) respectively.

The formal solution to Eq. (2.3) is

126G Q (29)

where G s the rgsolvent

G (Lg-0Og-dg)™! | (2.10)



Equation (2.9) may be rewritten as

1=(G4'-0g)7'Q (2.1)
= (1-G404) 7164 Q (212)

where

Gyu(Lg-0dg)™ (2.13)

By adding and subtracting G4 Q to the right-hand-side of Eq. (2.12) we

obtain after a few simple manipulations, without using series

expansions:
i=GdQ’Gdds (" Gdds)-'GdQ (2'4)

where Q' is a modified source:

Q=[1+0dg (G4 '-dg)7" 10Q (2.16)

which may be recast (using (G4™' - 0g )=(G™' - G 4) ) 8s

Q'=[l~os(l-Gsod)"Gs]Q (247
where
Gg = (Lg- Jg ) (2.18)

If we expand the second term on the right hand side of Eq. (2.17) In

powers of Gg O g (this is possible when °d/°s << | ;s@e referegnce A for

detalis), and retain only the first two terms for the sake of exposition,
we get
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1% GyQ+(Gyag) (65Q) + (GyOg) (Gg Ty ) (Gg Q) (2.19)
Denoting Gg Q by Ig and G4 Q by 14, we get

%1y +64(0gls) * Gy (0g (Gg Gg) Ig ) (2.20)

Of course, given the definitions of Gg and Gy, 4 and Ig are solutions

to:
(Lo-0g)14=Q (2.21)
and
(Lo-0g)ls=Q (2.22)
respectively.

In the second term on the right hand side of Eq. (2.20) the small
angle-solution acts as a secondary source. The third term gives us
cross-scattering between the forward angles and the diffuse angles. The
higher order terms we neglected would give us greater amounts of
cross-scattering. These higher order terms scatter the radiation in an
increasingly diffuse manner.

In the lowest approximation then,

1% ly+ GyOg I (2.23)
The terms we neglected are of the order of 0%/09 (see reference A).

This ratio clearly depends on kinds of aerosols (scatterers) we choose to
look at, and also the wavriength at which we operate. Thus our
approximation can be accuraiz, depending upon the nature of the aerosol
and the wavelength of the incident light.
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Since 14 is given by G4 Q = (Lg-Oy) ™' Q, and knowing that a4l << o}

(see reference A), we approximate Ig by:
lg* Lo ' Q= 8(Q-Qg) 8x(p-pg) exp(-04(2-2) (3.)
with 8x(p-pg) being a gaussian of width ¥, as defined in Eqn(2.1b).

In other words, we get the unscattered, attenuated part of the beam
explicitly. The scattered pat of the beam is given by the second term in
£q(2.23).

Now the second term on the right hand side of Eq(2.23) is the

solution to

(Lo-04)!x0glssQ (2.24)
This may be written in its full form as
Qv i(r,Q) + gy I(r,Q) - Ja2qy o4Q.Q') i(r.Q")

= [d2Q’ 0g(Q-Q") Ig(r.Q") (2.25)
where I(r,Q) is given by
Q'V 14(r.Q) + 0y 15(r.Q) = Q(r.Q) + [(2Q 0,(Q-Q") I4(r.Q") (2.26)
If 0g(Q-Q°), the small angle phase function is sharply peaked (in the

forward direction), one may employ the small angle approximation to
solve Eq. (2.26), and utilize that answer in Eq. (2.25).

We take pg=! in Eq(2.13), so that in the small angle approximation,

QV= §:V;+8/9z where ¢ = (4,.4,,0) and Vo (¥%. 9y, 0 ). Eq. (2.26)



then takes the form
ol(r.e )/0z + 0~vp| (r.8) + o, 1,(r,8)=0Q(r,Q)+
oo 702 O (#-9") Ig(r,8) (2.27)
If we now try to use the diffusion approximation directly on
Eq.(2.25), we find that we can accomodate at most the {irst momentt of
the ggel term (on the right hand side of Eq. (2.25)). But this may be a

bad approximation, especially near the source, when the beam has not yet

had a chance to spread out sufficiently. An alternative is to impiement

(numerically) a Py approximation.® But this is a nontrivial job in three

dimensions, and it is not clear how many moments of Tg®l . we may need

to perform an adequate job.
On the other hand, if we need the net flux at the target position
i.e.,we have an open detector, we need the following angular average:
P(re) = [d?QI(r,Q) Q'n (2.28)
where n is a unit vector in the direction toward which the open
detector is pointing.
We can now use the adjoint operator formalism!? (reference A) to
show that:

P(rg) = (WV | ) [d%r Io*(r.rg) [d2Q Q'(r,Q) (2.29)
where (see reference A),
I*o(r.ro)= -(3/87) exp(-/(c'®/D)) |r-rg|) / |r-ry| (2.30)

and the angular average of the modified source Q'(r,Q) is
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JR2QQ(rQ) = o f* "0 _, [ a0 (Q-0)(r.Q’) (2.31)

= ) T RQ04(Q-Q") [T d2Ql(r,Q")
= 00 L[ a2l (r,0") (2.312)

From Eqn(2.29), we see that P(rg) is simply the flux obtained by
solving the diffusion equation with [d2Q Q'(r,Q) as the source.

we must emphasize that this trick applies only when we need the
respcnse of an open detector, when in a manner of speaking, angular
effects are averaged out.

We therefore used the code DIF3D ! to solve the diffusion equation in
a cylindrical geometry, assuming azimuthal symmetry, with Eq(2.31a) as
a volumetric source.

4. NUMERICAL RESULTS.

when a laser beam traverses a turbid medium for a few optical depths
or less, one notices the following characteristics:

(a) The intensity is concentrated in the vicinity of the beam axis. This
is the unscattered part of the beam.

(b) Multiple scattering effects enhance the intensity in the "wings® of
the beam.

A true test of 2 multiple-scattering theory is not simply to match
experimental or simulation resuits close to the beam axis, but also in
the wings of the beam where scattering effects dominate, especially at
large optical depths.

Our rumerical results indicate that our method is successful in this



il
regard, in that our results compare favorably with Monte Carlo® results
for large optical depths.

we shall iliustrate our technique of combining the small-angle
approximation with the diffusion approximation by studying the
propagation of a collimated laser beam through a polydisperse
distribution of heavy dust for optical depths of = = 3.75 and 7.5. The
relevant phase functions were constructed by using the code AGAUSS

We have compared our results with those from Monte Carlo solutions
to the radiative transfer equation (provided by the code MSCAT®).

To put the comparison into perspective, we note that:

(1) we chose a polydisperse distribution of heavy dust since this

gives us 00040 = 7.156x10% (>>1) for A=0.55um. Thus one of the

criteria for implementing our combination scheme is satisfied. The
single scattering albedo is 0.999.

(2) The Monte Carlo code has a flat beam rather than a gaussian beam.

(3) The true phase function which is used by the code is not simply the
sum of a sharp gaussian in the forward direction and a *flat” part.

We found that at T = 7.5 we got good agreement with the Monte Cario
results (Fig.1). On the other hand for T = 3.75, where one might expect
good agreement from the small angle approximation alone, we find that
our use of the diffusion aprorximation gives an "average® result (Fig. 2).
At v = 9.0 The Monte Carlo code does not converge even for photons of
the order of 105 and we have not shown the results for this case. In Fig.

3 we have shown the results from our theory for three optical depths on
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the same graph, which clearly shows the beam as it succumbs to
absorption and muitiple scattering.
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